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Abstract

Spinal cord injuries (SCI) lead to significant changes in autonomic function, 
hemodynamics, and body composition. These structural and functional 
alterations are closely associated with the development of cardiovascular 
pathologies and other metabolic diseases. Recent clinical studies suggest that 
passive limb movement (PLM) has beneficial effects on cardiovascular function 
and skeletal muscle health, which has drawn a growing interest for the use of 
PLM as a therapeutic option for patients with SCI. However, there is a lack of 
mechanistic studies that examine the underlying mechanisms of how PLM may 
ameliorate cardiovascular and skeletal muscle function in patients with SCIs. In 
this review, we will discuss potential mechanisms of SCI-induced perturbations 
in autonomic function, hemodynamics, and body composition. Furthermore, 
we will highlight the therapeutic effects of PLM on autonomic function, vascular 
structure and function, and skeletal muscle in patients with SCIs. Additionally, 
we will also introduce the effects of other passive therapeutic interventions 
such as vibration and massage therapy with potential benefits and concerns 
for cardiovascular and skeletal muscle adaptations in SCI. Therefore, optimizing 
the application of PLM in patients with SCIs may be useful to salvage SCI-
induced attenuations in vascular function and body composition. 

Abbreviations
SCI = Spinal Cord Injury, PLM = Passive Limb Movement, CVD= 

Cardiovascular Disease, ANS = Autonomic Nervous System, WBV = 
Whole Body Vibration

Introduction
There are between 250,000 and 500,000 new spinal cord 

injuries (SCIs) reported worldwide every year1. Unfortunately, 
~80% of SCIs occur in those between the ages of 15-35 years. Given 
that SCIs happen relatively early in life, it has been reported that this 
population may have a greater propensity to develop cardiovascular 
diseases (CVDs) and have reduced quality of life. Additionally, 
according to the Center for Disease Control and Prevention, CVDs 
are the leading causes of death among patients 2,3 with SCI. 

SCIs are reported to have a complicated symptomology because 
of variation in the level of injury to the spinal cord.  Generally, it has 
been reported that patients with SCI have sensory and motor nerve 
impairment and autonomic nervous system (ANS) dysfunction, 
which limits  functional mobility, and increases the risk of developing 
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metabolic dysfunctions and vascular maladaptations4. 
The ANS is the major regulator for hemodynamics, heart 
rate, blood pressure, and respiration. Impairments of the 
ANS have been known to increase the prevalence of both 
arterial hypo- and hyper-tension, brady- and tachy-cardia, 
and autonomic dysreflexia ,5 which may prevent patients 
with SCI from engaging in regular physical activity and 
may lead to significant changes in body composition and 
vascular health6. 

The increased incidence of CVDs among those with SCIs 
may be partially attributed to decreased physical activity, 
prolonged periods of immobility, muscle atrophy, increases 
in intramuscular fat, and vascular maladaptations7,8. 
Therefore, devising methods to target higher levels of 
physical activity and the subsequent changes in muscular 
and vascular environments may serve to provide protective 
effects against the development of CVDs in this population. 
Physical activity and exercise training programs have 
been shown to be clinically effective modalities to reduce 
CVD risk in those with SCIs9. Although physical activity 
and exercise guidelines already exist for patients with 
SCIs, most of these guidelines focus on only upper limb 
movements that are adapted from guidelines for non-SCI 
individuals10. Furthermore, many patients with SCIs suffer 
from upper limb pain and experience upper body muscle 
injuries11. Therefore, there is a need for exercise training 
protocols and modalities that target the lower limbs, which 
may promote autonomic function, improve hemodynamics, 
and prevent cardiovascular and metabolic maladaptations. 
Recently, passive limb movement (PLM) has been used 
to improve hemodynamics in the lower limbs in those 
with SCIs and in healthy people during prolonged sitting. 
Therefore, we and others reported that PLM may be an 
effective, cost-efficient, and accessible intervention to 
improve vascular function12,13. Therefore, in this review, 
we will discuss the potential beneficial effects of PLM on 
central and local autonomic function, hemodynamics, body 
composition, and potential application for patients with 
SCIs.

Autonomic Function
SCIs often results in various levels of ANS dysfunction. 

The degree of ANS dysfunction is highly dependent on the 
level of injury to the spinal cord. For example, those with 
cervical SCIs often exhibit greater ANS dysfunction than 
those with thoracic SCIs14. This dysfunction is usually 
characterized by an imbalance between sympathetic and 
parasympathetic nervous system activity. Intraspinal 
sympathetic fibers are anatomically or physiologically 
disrupted during an SCI and can lead to reduced vascular 
tone and hyperactivity of the parasympathetic nervous 
system7. This loss of synergy is especially common in 
patients with cervical or high thoracic SCIs15. For example, 
injuries occurring in the cervical spine (C1-C8) disrupt 

supraspinal control to the heart, and injuries occurring 
in the upper thoracic spine (T1-T5) affects sympathetic 
outflow to the heart; however,  injuries occurring in the 
lower thoracic spine (T6-T12) leave sympathetic control to 
the heart intact16. 

The development of ANS dysfunction in patients with 
SCIs can be subdivided into acute and chronic phases. In the 
acute phase of SCI, the pre-dominance of parasympathetic 
nervous system activity can result in bradycardia, 
hypotension, poikilothermia, bradyarrhythmia, and 
vascular stasis. In the chronic phase, patients with SCI 
can maintain stable cardiac function but continue to have 
impaired cardiovascular reflexes and are prone to other 
complications. These complications manifest themselves 
in the form of impaired transmission of cardiogenic pain, 
and cardiac atrophy.

 For both the acute and chronic stages, patients with 
SCIs demonstrate an inability to adequately regulate and 
maintain blood pressure through neurogenic pathways. 
The neurogenic pathways, through the baroreceptor 
reflexes (afferent nerves, vasomotor system, intraspinal 
sympathetic system and extra spinal postganglionic 
outflow), are responsible for short term regulation of 
blood pressure. In patients with SCIs these regulatory 
mechanisms are defective or nonoperative because 
of central interruptions of the descending intraspinal 
sympathetic pathways4 and leads to autonomic dysreflexia, 
which becomes a medical emergency that can cause 
seizures, myocardial infarction, intracranial bleeding, and 
even death17,18. 

Although the number of studies investigating the 
effects of PLM on blood pressure regulation and autonomic 
dysreflexia in those with SCIs are scarce, there are studies 
that have investigated this in healthy individuals. Shi 
et al. aimed to identify the autonomic nervous system 
response to PLM  in healthy individuals19. Results showed 
that PLM leads to the suppression of sympathetic nervous 
system activity and vagal activity achieves dominance. 
Similarly, Fouladi et al. reported that PLM can decrease 
the sympathetic control and increase parasympathetic 
control of heart rate20. Doherty et al. found a reduction in 
leg muscle sympathetic nervous activity and a reduction 
of sympathetic baroreceptor sensitivity after an acute 
bout of PLM21. Matsui et al.  also showed that PLM can 
decrease vasomotor tone without the abrupt changes in 
heart rate and arterial blood pressure22. Combining the 
results of these previous studies, PLM may be a viable and 
useful intervention to increase leg blood flow in those with 
SCIs12,23. Furthermore, PLM may not trigger abrupt changes 
in heart rate or blood pressure that could ultimately lead to 
episodes of autonomic dysreflexia. 

Clinically relevant animal models have also been used to 
investigate the effects of PLM on blood pressure regulation 



Park SY, Benitez-Albiter A, Anderson CP, Kim S, An YH, Park SS, Kim JH. Potential 
Therapeutic Effects of Passive Limb Movement in Patients with Spinal Cord Injuries. J Rehab 
Therapy.2023;5(2):18-26

Journal of Rehabilitation Therapy

Page 20 of 26

Another likely contributor to vascular dysfunction in those 
with SCIs is physical inactivity. The effects of physical 
inactivity on healthy individuals have been previously 
investigated using horizontal bed rest as a model of 
inactivity32,41. They reported a reduction in femoral artery 
diameter, blunted endothelial function, increased shear 
stress, and increased peripheral resistance42. 

Previous studies with healthy individuals report that 
increased muscular contraction by voluntary exercise 
alters the structure and vasomotor properties of the arterial 
system. Interestingly,  in healthy individuals , non-voluntary 
muscular contraction such as PLM also elicits a significant 
transient hyperemic response in the femoral artery43. The 
increased hyperemic response by PLM may be explained 
by both central and peripheral mechanisms including 
stimulation of group III muscle afferents,44 increased stroke 
volume due to increased venous return45, and nitric oxide-
mediated vasodilation46.  However, due to SCIs, afferent 
feedback to the cardiorespiratory control center may be 
absent. Thus, hyperemic responses in SCI may be solely 
due to peripheral factors47. Venturelli et al. investigated 
the effects of PLM induced hyperemia in patients with 
SCIs and healthy individuals13. The results show that PLM 
induces a greater increase in leg blood flow in healthy 
individuals compared to those with SCIs. However, after 
normalizing leg blood flow to muscle volume there was 
evidence of preserved vascular function. A comparison 
of leg blood flow in the passively moved and stationary 
leg showed that 35% of the hyperemic response resulted 
from increased cardiac output and heart rate in healthy 
individuals, whereas the hyperemic response in those with 
SCIs appeared to have a peripheral origin13. Soriano et al.  
reported an increase in the activity of the cardiorespiratory 
system and improved femoral endothelial function after 10 
minutes of PLM in tetraplegics48. Muraki et al. examined the 
cardiovascular responses at the onset of PLM in patients 
with SCIs who have intact cardiac sympathetic innervation 
compared to healthy individuals49. The results showed 
a significant increase in cardiac output for both groups. 
Heart rate increased rapidly in healthy individuals during 
PLM, whereas the heart rate response was blunted in 
patients with SCIs. The blunted heart rate response at the 
onset of PLM in patients with SCIs is presumably due to 
the absence of skeletal muscle afferent feedback from the 
lower limbs. Ballaz et al. examined the acute peripheral 
hemodynamic response to PLM. The main finding of the 
study was that blood flow velocity in the femoral artery 
increased by 30%23. Additionally, Burns et al. examined 
the hyperemic response due to PLM in paraplegics12. Nine 
patients with SCI performed five sets of 1-min bouts of PLM 
with 1-min recoveries. There were no changes in heart rate 
or mean arterial pressure, however, femoral artery blood 
flow and skin blood flow increased. PLM may be a clinically 
significant modality to improve circulation and reduce the 

and autonomic dysreflexia. West et al. reported that passive 
cycling stabilizes resting blood pressure and prevents 
maladaptive cardiac remodeling in rodents with T3 SCIs24. 
West et al. also reported that one month of passive leg 
cycling can reduce autonomic dysreflexia severity in rats 
with high-thoracic SCIs25. To confirm if these results can 
be translated to humans, there is a need for future studies 
that examine the effects of lower-limb passive cycling on 
cardio-autonomic profiles in patients with SCIs and/or 
other clinical populations with autonomic dysreflexia.

Another possible outcome due to ANS dysfunction is the 
prevalence of sleep apnea and sleep disordered breathing. 
Sleep apnea has been associated with an increased risk 
of hypertension, coronary artery disease, stroke, and 
heart failure26. Sleep apnea is very common within the SCI 
population with over 80% of tetraplegics suffering from 
some sort of sleep disordered breathing,27 however sleep 
apnea is underdiagnosed and therefore remains untreated in 
patients with SCI28. Studies have shown that sleep disordered 
breathing could be a confounding variable for rehabilitation 
interventions in patients with SCI29. Therefore, future studies 
investigating PLM or other rehabilitation modalities should 
screen for sleep disordered breathing to see the outcomes of 
their intervention more accurately. 

Hemodynamics
Due to paralysis below the SCI and subsequent disuse of 

the lower limbs, arterial function may deteriorate in patients 
with SCI. Previous studies suggest there may be arterial 
remodeling  in the paralyzed limbs that occurs within 
weeks after an SCI30. These alterations are characterized 
by significant reductions in systemic blood volume,31 and a 
consequent inward remodeling of the arterial wall,32 such 
that the diameter of the common femoral artery is 30-50% 
smaller 33-36 and resting blood flow in the leg is 30-40% 
lower than in individuals without an SCI36,37. These structural 
and functional adaptations most likely reflect the reduced 
physical activity and metabolic demand. Even though there 
is relatively little change in blood flow with respect to 
muscle mass, improvement of lower-limb circulation is very 
important, since poor lower limb circulation and venous 
stagnation can lead to deep vein thrombosis38. 

Many patients with SCIs experience a loss of supraspinal 
sympathetic control, which may cause impaired 
vasoconstriction capacity of the peripheral arteries15. 
Although reduced leg vascular resistance has been reported 
in some patients with SCIs,39 the majority of studies have 
reported an increase in leg vascular resistance. Increased 
vascular resistance may be due to altered vasomotor 
control and impaired peripheral vascular vasoconstriction 
function. Sympathetic hypoactivity following high thoracic 
or cervical SCI causes a reduction in level of epinephrine and 
norepinephrine at rest and during exercise,40 which may 
attenuate vasoconstriction in the peripheral vasculature. 
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risk of deep vein thrombosis. Future research is needed 
to evaluate the potential for PLM to improve long-term 
cardiovascular health for patients with SCIs. The effects of 
PLM are summarized in Table 1. 

Body Composition
Those with SCIs tend to exhibit alterations in body 

composition 7,50-52. Specifically, those with SCIs have a higher 
percentage of fat mass and lower percentage of fat-free 
mass in the lower-limbs compared to healthy individuals53. 

These maladaptations are typically due to paralysis, which 
causes the loss of volitional muscle contractions, tissue 
metabolic impairments, and vascular hypotrophy. Monroe 
et al. previously reported that patients with SCIs have 
reduced total energy expenditure, a lower resting metabolic 
rate, and a diminished thermic effect from physical activity 
and food intake54. Reduced skeletal muscle mass in the face 
of unchanged dietary habits, in conjunction with reduced 
physical activity results in an unhealthy balance between 
caloric intake and energy expenditure55. 

Year Author Model n AIS Severity of 
SCI

Level of 
Lesion Age Sex Intervention Outcomes

2014 West Winstar Rats 21 A C T3 9 weeks Male

Passive Hind-Cycling 
2x 30 min/day, 5 
days/week for 4 
weeks beginning 6 
days post- SCI

Maladaptive Cardiac 
Remodeling ↓                          
Blood Pressure ←→

2016 West Winstar Rats 45 A C T3 NA Male

Passive Hind-Cycling 
2x 30 min/day, 5 
days/week for 4 
weeks beginning 6 
days post- SCI

Autonomic 
Dysreflexia Severity 
↓

2014 Venturelli Humans 8 A C T6-T12 42 ± 8 years Male & 
Female

2 minutes of passive 
knee extension at 
1 Hz

Preserved Vascular 
Function when 
Normalized to Muscle 
Volume

2022 Soriano Humans 11 A-C 9 C, 2 I C3-C7 40 ± 10 
years

Male & 
Female

10 minutes of cycling 
at 29 ± 1 rpm

Cardiorespiratory 
Activity ↑                      
Femoral Endothelial 
Function ↑

2000 Muraki Humans 6 A-B C T8-L1 49.2 ± 4.5 
years Male Passive Leg Cycling 

for 6 min at 40 rpm
Cardiac Output ↑ 
Stroke Volume ↑

2007 Ballaz Humans 15 A-C 13 C, 2 I T3-L1 47 ± 8 years Male & 
Female

Passive Leg Cycling 
for 10 min at 40 rpm

Femoral Blood Flow 
Velocity ↑

2018 Burns Humans 9 A C T3-T11 46 ± 6 years Male & 
Female

5x1 min bouts 
of passive knee 
extension/flexion 
at 1 Hz with a 1 min 
recovery period 
between each bout

Femoral 
Blood Flow ↑                                    
Skin Blood Flow ↑

2016 Shi Humans 30 Healthy — — 22.5 ± 2.3 
years

Male & 
Female

Three 8-min trials 
of passive cycling 
at 5 cycles/min, 10 
cycles/min, and 15 
cycles/min

Sympathetic Nervous 
System Activity↓  
Vagal Activity ↑

1998 Matsui Humans 9 Healthy — — 22.2 ± .34 Female 10 min of passive leg 
cycling at 17 rpm Vasomotor Tone ↓

2019 Fouladi Humans 22 Healthy — —

Men 22.8 ± 
0.9 years; 
Women 

21.8 ± 0.5 
years

Male & 
Female

Passive leg 
movement for 3 min 
at 0.5 Hz

 Sympathetic 
Control of HR ↓  
Parasympathetic 
Control of HR ↑

2018 Doherty Humans 25 Healthy — — 22 ± 3 years Male & 
Female

1-2 min of single-leg 
passive leg cycling 
(50 revs/min)

Leg Muscle 
Sympathetic Activity 
↓   Sympathetic 
Baroreceptor 
Sensitivity ↓

Table 1 : Summary of Effects of Passive Limb Movement Therapy
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Castro et al. investigated the influence of SCIs on 
skeletal muscle cross-sectional area within the first 6 
months of injury. Within 6-weeks after an SCI, skeletal 
muscle cross-sectional area was decreased by 24% and 
12% in the gastrocnemius and soleus, respectively. The 
quadriceps femoris, hamstring muscles, and adductor 
muscles also showed decreases in cross-sectional area 
of 16%, 14%, and 16%, respectively. After 24 weeks, the 
average cross-sectional area of atrophied muscles in the 
SCI group was 45-80% lower than age- and weigh-match 
non-SCI controls56. In addition to a reduction in muscle 
mass, a reduction in bone mineral density has also been 
observed in SCI57-59. In general, there was no difference in 
total body bone mineral density between patients with SCI 
and healthy individuals60. However, there was a significant 
reduction in bone mineral density in the lower limbs of 
patients with SCI60. Furthermore, loss of skeletal muscle 
mass in the upper limbs is more common in tetraplegics. 
However, in paraplegics this trend seems to be inverted 
for the upper-limbs61. Patients with paraplegia showed 
higher bone mineral density in the upper-limbs and this 
could be due to the constant reliance of their arms for daily 
tasks and wheelchair use8. Key factors for the loss of bone 
mineral density in patients with SCI may be attributed 
to the absence of gravitational load on the lower limbs, 
whereas the differences in fat mass could be due to changes 
in activity/movement60. 

Singh et al. investigated changes in body composition 
in patients with SCIs over the course of a year. The authors 
observed a decrease in bone mineral content and lean 
body mass with an increase in adiposity during the first 
year of SCI62. Spungen et al. explored changes in body 
composition between healthy males and males with SCIs. 
The study reported that patients with SCIs had less lean 
mass and more adipose tissue61. Interestingly, they also 
found that tetraplegics had lower lean tissue and a higher 
fat percentage in the upper limbs and trunk compared to 
those with paraplegia. This could indicate that tetraplegics 
are at the greatest risk for detrimental changes in body 
composition. Spungen et al. also examined the effect of 
paralysis on body composition. For this study, eight pairs of 
monozygotic twins, one twin in each pair with paraplegia, 
were recruited. Regionally, arm lean tissue mass was not 
different between the twin pairs, whereas trunk, leg, and 
total lean tissue masses were significantly lower in the 
paralyzed twin63. 

Skeletal muscle atrophy is accompanied by an increase 
in both the absolute and relative intramuscular fat cross-
sectional area and other chronic health conditions 
including glucose intolerance, diabetes, and cardiovascular 
disease in patients with SCI64-66. Additionally, skeletal 
muscle oxidative capacity reflects the oxygen uptake and 
substrate utilization of skeletal muscle tissue, and it is 

decreased after SCI or through reductions in physical 
activity in humans and rodents67,68. Furthermore, the loss 
of mitochondrial density and function occur alongside 
muscle atrophy after the onset of paralysis69. More research 
is needed to evaluate the effects of PLM on mitochondrial 
function and density in patients with SCI. 

While the number of studies investigating the effects 
of PLM on body composition in SCI patients are scarce, 
different patient populations have been investigated. Jigjid 
et al. evaluated the effects of PLM on muscle oxygenation 
level and electromyographic activity in the lower limbs 
of chronic stroke patients. Results showed that PLM have 
the capacity to enhance oxygen metabolism and muscle 
activity even in the paretic lower limb70. While this study 
only investigated the acute effects of PLM, the increases in 
muscle oxygen metabolism and muscle activity may lead 
to changes in body composition over time. Longitudinal 
studies are needed to fully evaluate the effects of PLM on 
body composition in patients with SCI. 

Vascular Adaptations
A shortcoming of the studies that have investigated 

the effects of SCIs on muscle mass is that alterations in 
the vasculature were not studied in relation to these 
changes. Several other studies have reported that 
vascular atrophy occurs in this population. For example, 
femoral artery diameter size is 50% smaller than healthy 
individuals in both paraplegics33,71 and tetraplegics34. Olive 
et al. compared femoral artery diameter size and reactive 
hyperemia with Doppler ultrasound in patients with SCIs 
and healthy individuals. They found that patients with 
SCIs had smaller muscle cross-sectional areas and volumes 
compared to healthy people. Femoral artery diameter 
and femoral artery maximal blood flow were also lower 
in patients with SCIs compared to healthy individuals6. 
However, when femoral artery diameter and blood flow 
were normalized by muscle volume, no differences were 
found between healthy individuals and patients with 
SCI. De Groot et al. assessed the time course of vascular 
adaptations to inactivity and paralyses in humans. The 
authors concluded that vascular adaptations such as 
reduced common femoral artery diameter and blood flow 
are largely completed within 6 weeks of injury36. De Groot 
et al. also assessed endothelial function in paralyzed limbs 
(legs) and chronically active limbs (arms) in patients with 
SCIs. The flow-mediated dilation technique was used to 
assesses endothelial function in the superficial femoral 
artery and the brachial artery. Results showed that patients 
with SCIs had reduced endothelial function in the inactive 
legs and preserved endothelial function in the active arms 
compared to healthy controls72. While some studies have 
investigated the changes in body composition of patients 
with SCIs both acutely and over time, little is known about 
the vascular structural and functional adaptations by PLM. 
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The effects of PLM on vascular structural adaptations 
such as artery size and angiogenic capacity have not been 
examined, nor have the effects of a reduced artery diameter 
and blood flow on muscular function during exercise. The 
SCI-mediated changes in body composition, such as the 
combination of increased fat mass, reduced skeletal muscle 
mass, and attenuated bone mineral density puts the SCI 
population at risk for the development of CVDs, diabetes73, 
obesity53, and inflammation74. Creating modalities that can 
improve health in this population should be of upmost 
importance. Future research is needed to investigate the 
chronic effects of PLM on vascular structure and function 
in the lower limbs and body composition in patients with 
SCIs.

Other Potential Exercise Modalities 
The SCI population has limited options for exercise 

training. Paraplegics are limited to upper-limb exercises 
and require help to perform lower-limb movements, 
whereas tetraplegics require assistance with any type 

of movement. A limited selection of exercise protocols 
coupled with a sedentary lifestyle puts this population 
at the forefront for the development of cardiovascular 
and metabolic diseases. Potentially, passively inducible 
therapies including massage and vibration therapies may 
be beneficial for patients with SCIs. 

Massage and vibration modalities involve the 
stimulation of soft tissues such as muscles, tendons, and 
ligaments. These therapies may be used to improve range 
of motion and attenuate muscle spasticity in patients with 
SCIs. Lovas et al. showed that a 30-minute muscle massage 
once a week for 5 weeks is enough to effectively reduce 
pain scores in patients with SCI75. Diego et al.  investigated 
the effect of massage therapy and further compared with 
exercise training, the results of this study suggested that 
massage therapy showed greater improvements in muscle 
strength and fine motor (wrist) range of motion than the 
exercise group in patients with tetraplegia76. Massage 
therapy has been shown to reduce pain and fatigue in 
patients with SCI75,76 but the effects on vascular function and 

2017 Lovas Humans 39 NA 20 C, 19 I NA 46 ± 11.6 
years

Male & 
Female

Group 1: 30 min of Mas-
sage therapy Once/week 
for 5 weeks Group 2: 30 
min of Guided Imagery 
once/week for 5 weeks

Pain Scores ↓

2002 Diego Humans 20 NA NA C5-C7 39 ± 12.2 
years

Male & 
Female

Group 1: Massage Thera-
py                2 times/week 
for 5 weeks.            Group 
2: Exercise Routine                   
2 times/week for 5 
weeks

Muscle 
Strength ↑                           
Wrist Rage of 
Motion ↑

2005 Bleeker Humans 16 Healthy — — 34 ± 2 years Male & 
Female

Group 1: Bed Rest 
Control         Group 2: 
Bed Rest with resistive 
vibration therapy

Superficial 
Femoral Artery 
Diameter ↑ 
compared to 
control

2016 Menendez Humans 17 A-B C C4-L1 49.9 ± 12.5 
years

Male & 
Female

Group 1: WBV + 
FES for 12 weeks                             
Group 2: Control

 Blood Flow ↑                          
Popliteal Artery 
Resting Diam-
eter↑ Muscle 
Thickness ↑

2011 Herrero Humans 8 A C C5-L1 36.1 ± 5 
years

Male & 
Female

WBV at 3 different fre-
quencies (10z, 20z,30z) 
and protocol (continu-
ous, fragmented) 

Peak Blood 
Flow Velocity ↑

2009 Cotey Humans 11 A-C 2 C, 9 I C2-T4 32.4 ± 14.1 
years

Male & 
Female

BWSTT + Vibration, 4 dif-
ferent vibration settings 
each 20 sec long

Muscle EMG 
Activity ↑

2022 Wong Humans 16 C-D I C2-C7 55 ± 8 years Male & 
Female

Group1: Moderate dose 
of WBV Group 2: High 
dose of WBV

 Neuropath-
ic Pain ↓In 
Moderate Dose 
Group

Table ١: Summary of Effects of Passive Limb Movement Therapy, Functional Electrical Stimulation Therapy, and Massage/Vibration Therapy 
Abbreviations: AIS = American Spinal Injury Association Impairment Scale; C = Complete; I = Incomplete; NA = Not Available; FES = Func-
tional Electrical Stimulation; HR = Heart Rate; EMG = Electromyography
BWSTT = Body Weight Supported Treadmill Training; CSA= Cross Sectional Area; WBV = Whole Body Vibration  

Table 2: Summary of Effects of Massage/Vibration Therapy
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body composition have not been thoroughly investigated, 
further research is needed to see the full potential of this 
intervention.

Wong et al. showed that whole body vibration (WBV) 
in moderate doses appears to decrease neuropathic pain 
symptoms and improve reflex modulation77. In the Berlin 
Bed Rest Study, conducted by Bleeker et al., the effects of 
bed rest deconditioning on vascular function and structure 
of the lower limb conduit arteries were assessed in healthy 
men. Results showed that the 16% decrease in superficial 
femoral artery diameter in the control group was reduced 
to 5% when combined with vibration and resistance 
training.42 Menendez et al. showed that WBV coupled 
with electro-stimulation can increase blood flow and 
resting diameter of the popliteal artery as well as increase 
muscle thickness78. Herrero et al. showed that WBV is an 
effective method to increase leg blood flow and muscle 
mass in patients with SCI79. Cotey et al. showed that WBV 
coupled with body weight supported treadmill training 
is an effective modality to increase muscle activation of 
the paralyzed legs80. Vibration therapy has been shown 
to increase vascular function and muscle mass,79 but 
only when in conjunction with another modality80. More 
research is needed to see the full efficacy of WBV on its 
own. The effects of massage and vibration therapies have 
been summarized in Table 2. 

Conclusion
The ramifications of SCIs lead to significant changes in 

autonomic function, hemodynamics, and body composition 
that are closely associated with risks of CVDs. While many 
interventions have been introduced and applied to help 
ameliorate the negative repercussions of SCIs, some of 
these interventions are not accessible or appropriate for 
all patients with SCI. The majority of exercise training 
interventions consist of upper-limb voluntary muscular 
contractions and only limited types of passive limb 
exercise have been used to improve autonomic function, 
hemodynamics, and body composition. PLM such as 
passive leg cycle ergometry is shown to improve clinical 
outcomes such as improve vascular function and help 
increase circulation for patients with SCIs. PLM is easily 
reproducible, accessible, and cost-effective. Therefore, 
we suggested that PLM may be a clinically beneficial 
therapeutic modality for patients with SCIs.
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